Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker.

Original publication

DOI

10.1038/s41398-020-01013-y

Type

Journal article

Journal

Transl Psychiatry

Publication Date

08/10/2020

Volume

10

Keywords

Biomarkers, Brain, Humans, Magnetic Resonance Imaging, Neuroimaging, Obsessive-Compulsive Disorder