Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To assess the association between covid-19 vaccines and risk of thrombocytopenia and thromboembolic events in England among adults. DESIGN: Self-controlled case series study using national data on covid-19 vaccination and hospital admissions. SETTING: Patient level data were obtained for approximately 30 million people vaccinated in England between 1 December 2020 and 24 April 2021. Electronic health records were linked with death data from the Office for National Statistics, SARS-CoV-2 positive test data, and hospital admission data from the United Kingdom's health service (NHS). PARTICIPANTS: 29 121 633 people were vaccinated with first doses (19 608 008 with Oxford-AstraZeneca (ChAdOx1 nCoV-19) and 9 513 625 with Pfizer-BioNTech (BNT162b2 mRNA)) and 1 758 095 people had a positive SARS-CoV-2 test. People aged ≥16 years who had first doses of the ChAdOx1 nCoV-19 or BNT162b2 mRNA vaccines and any outcome of interest were included in the study. MAIN OUTCOME MEASURES: The primary outcomes were hospital admission or death associated with thrombocytopenia, venous thromboembolism, and arterial thromboembolism within 28 days of three exposures: first dose of the ChAdOx1 nCoV-19 vaccine; first dose of the BNT162b2 mRNA vaccine; and a SARS-CoV-2 positive test. Secondary outcomes were subsets of the primary outcomes: cerebral venous sinus thrombosis (CVST), ischaemic stroke, myocardial infarction, and other rare arterial thrombotic events. RESULTS: The study found increased risk of thrombocytopenia after ChAdOx1 nCoV-19 vaccination (incidence rate ratio 1.33, 95% confidence interval 1.19 to 1.47 at 8-14 days) and after a positive SARS-CoV-2 test (5.27, 4.34 to 6.40 at 8-14 days); increased risk of venous thromboembolism after ChAdOx1 nCoV-19 vaccination (1.10, 1.02 to 1.18 at 8-14 days) and after SARS-CoV-2 infection (13.86, 12.76 to 15.05 at 8-14 days); and increased risk of arterial thromboembolism after BNT162b2 mRNA vaccination (1.06, 1.01 to 1.10 at 15-21 days) and after SARS-CoV-2 infection (2.02, 1.82 to 2.24 at 15-21 days). Secondary analyses found increased risk of CVST after ChAdOx1 nCoV-19 vaccination (4.01, 2.08 to 7.71 at 8-14 days), after BNT162b2 mRNA vaccination (3.58, 1.39 to 9.27 at 15-21 days), and after a positive SARS-CoV-2 test; increased risk of ischaemic stroke after BNT162b2 mRNA vaccination (1.12, 1.04 to 1.20 at 15-21 days) and after a positive SARS-CoV-2 test; and increased risk of other rare arterial thrombotic events after ChAdOx1 nCoV-19 vaccination (1.21, 1.02 to 1.43 at 8-14 days) and after a positive SARS-CoV-2 test. CONCLUSION: Increased risks of haematological and vascular events that led to hospital admission or death were observed for short time intervals after first doses of the ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines. The risks of most of these events were substantially higher and more prolonged after SARS-CoV-2 infection than after vaccination in the same population.

Original publication

DOI

10.1136/bmj.n1931

Type

Journal article

Journal

BMJ

Publication Date

26/08/2021

Volume

374