Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Obesity, which is becoming one of the major health hazards in developed and developing societies, results from a long-term positive energy balance. Body-weight regulation and stability depend on an axis with three interrelated components: food intake, energy expenditure and adipogenesis, although there are still many unknown features concerning fuel homeostasis and energy balance. Biochemical processes are interconnected, and a separate consideration of each component is often useful for methodological purposes and to achieve a better understanding of the whole system. Thus, many different experimental approaches can be applied by using laboratory animals, cell culture or human subjects to unravel the molecular mechanisms which participate in body-weight regulation. Thus, both in vitro (cellular and subcellular models) and in vivo methods have dramatically increased our knowledge of weight control. Several strategies in obesity research are reported here, exploiting the opportunities of the molecular era as well as novel whole-body approaches, which will impact on the development of new targets for obesity management and prevention.

Original publication

DOI

10.1017/s0029665100000458

Type

Journal article

Journal

Proc Nutr Soc

Publication Date

08/2000

Volume

59

Pages

405 - 411

Keywords

Animals, Body Composition, Body Weight, Energy Metabolism, Gene Expression, Humans, Mice, Models, Animal, Models, Genetic, Mutation, Obesity, Polymorphism, Genetic, Rats, Research, Rodentia